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Abstract  
 

Numerous reproductive biotechnologies are 
commonly employed to enhance animal production 
mainly through multiplying animals with high-quality 
traits in a large-scale production system. There is, 
however, several peculiarities during the process of 
embryo in vitro production that are still in need of further 
studies in order to obtain a higher efficiency. This present 
review discuss some of such particularities, as well as 
new models of embryo and gamete production, which 
will probably be part of a new era of reproductive 
biotechnologies in a near future. 
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Introduction 
 
The development of embryo technologies have 

been for long time challenging technicians to find better 
strategies and apply them in an efficient and low-cost 
manner, aiming benefits to animal production. Having such 
opportunities in mind, it is due to our society to face the 
challenges of improving such technologies, and also, to be 
ready and able to develop and adapt new technologies. 

Last decades have witnessed a huge development 
of biotechnology methodologies, elaborated or else 
adapted for our specific conditions, such as embryo 
transfer (ET), in vitro fertilization (IVF), fixed time 
embryo transfer (FTET), and also some cryopreservation 
approaches that allow embryo large-scale production. 

Theoretically, an efficient embryo production 
leads to a multiplying process of specifically selected 
animals and consequently, to an improvement on animal 
breeding. However such improvement is still not fully 
described in scientific reports or studies containing clear 
and evident examples. 

Which would be the reasons? Would we have 
reached a plentiful competence so that such studies will 
not have to be performed? Are there still opportunities 
for the improvement of gamete generation or embryo 
production derived from selected animals? 
 

Oocyte donors 
 

One of the most prominent properties in the 
process of embryo production is the individual variation 

between donors. Such feature is highly noticeable and 
observed in both embryo or cumulus-oocytes complexes 
(COCs) recovery by superovulation/embryo transfer or 
ovum pick-up (OPU) procedures (Yang et al., 2008; 
Pontes et al., 2011). 

The number of embryos produced by OPU/IVF 
is associated only to folliculogenesis and independent 
from uterine-environment or males, allowing therefore a 
very unbiased research strategy. 

Indeed, it has been reported that oocyte recovery 
from some specific animals may be higher when compared 
to other animals, with a distribution similar to a Gaussian 
curve. Moreover, there is a tendency for such higher 
recovery to be maintained throughout several follicle 
aspirations sections (Garcia and Salaheddine, 1998). There 
are also reports showing that the pool of preantral follicles 
in a bovine ovary presents high correlation with the 
number of antral follicles found, and most importantly, 
with its fertility (Mossa et al., 2012). Finally, discussions 
with colleagues that use OPU in a routine manner leads to 
the hypothesis that such characteristic is genetically 
transferred and that daughters of females that present a 
pool of increased antral follicles frequently present the 
same characteristics. 

A study to observe such genetic characteristic 
was recently developed aiming the identification of 
molecular markers related to the number of viable 
COCs retrieved (Santos-Biase et al., 2012). Even 
though few markers were evaluated, they have showed 
significant effect on COCs production, and 1.9 more 
COCs could be retrieved per OPU routine. Interestingly, 
the markers were present more frequently in zebu 
animals, and therefore may be associated to a higher 
OPU/IVF efficiency in these species. Therefore, studies 
applying large-scale embryo in vitro production systems 
are encouraged and may contribute to the increase of 
embryo production. 
 

Oocytes transcripts and competence 
 

The oocyte competence to go through 
fecundation and to properly develop into blastocyst and 
term strongly depends on the synthesis and storage of 
several components during the oogenesis (Lonergan et 
al., 2003; Gandolfi et al., 2005; Sirard et al., 2006). It is 
well established that such components (i.e. RNAs, 
proteins, and energetic substrates) are essential during
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the earliest stages of embryo development, when their 
transcriptional activity is limited (Memili et al., 1998; 
Picton et al., 1998; Memili and First, 2000; Meirelles et 
al., 2004). In oocytes, gene expression is regulated and 
variable throughout oogenesis. Differentially expressed 
genes have been characterized in oocytes with greater 
developmental competence (Pan et al., 2005; Fair et al., 
2007; Katz-Jaffe et al., 2009; Mamo et al., 2011). These 
findings support the hypothesis that specific mRNAs 
and proteins produced during oogenesis drive the 
adequate embryo development (Robert et al., 2000; Fair 
et al., 2004; Gutiérrez-Adán et al., 2004; Meirelles et 
al., 2004; Mourot et al., 2006; Patel et al., 2007; Caixeta 
et al., 2009; Romar et al., 2011). It is of general 
consensus that oocytes that do not complete the process 
of mRNAs synthesis until ovulation or OPU have 
poorer developmental competence (Fair et al., 1995). In 
cattle, oocytes from COCs morphologically classified as 
grade 1 quality have greater amounts of mRNAs than 
poorer quality oocytes (Biase et al., 2008). However, 
any correlation between mRNA amount and the 
developmental capacity to blastocyst was observed 
when the same oocyte was used for both the analysis of 
the quantity of transcripts and the developmental rate 
(Biase et al., 2009). The feasibility of such an 
experiment required the creation of a new retrospective 
model that allowed the individual analysis of 
development. For that, the transcripts were quantified 
from cytoplasmic biopsies of mature oocytes 
parthenogenetically activated and individually 
cultivated (Biase et al., 2009). Although these findings 
indicate that the global amount of mRNAs is not related 
to the embryo competence of development, more than a 
hundred genes were already described as differentially 
expressed between competent and incompetent oocytes 
(Robert et al., 2000; Fair et al., 2004; Gutiérrez-Adán et 
al., 2004; Mourot et al., 2006; Patel et al., 2007; Caixeta 
et al., 2009; Romar et al., 2011). Thus, this same 
retrospective model described above was used to 
analyze differentially expressed genes between oocytes 
that have developed into blastocysts and those that were 
blocked at the 8-16 cells stage (Biase et al., 2012). 
Twenty-nine genes were identified as differentially 
expressed, 16 of those have higher expression in the 
biopsies of the oocytes that developed into blastocysts, 
and 13 in the ones that were blocked at the 8-16 cells 
stage. A significant part of these genes were involved in 
the regulation of transcription, RNA processing and 
protein synthesis and degradation (Biase et al., 2012). 
Moreover, other differentially expressed genes related 
to DNA repair and replication and also in the cellular 
cycle were detected (Biase et al., 2012). Thus, these 
findings are in agreement with previous reports that 
indicate that the transcripts stored during the oocytes 
growth and maturation are important to determine their 
developmental competence (Robert et al., 2000; Fair et 
al., 2004; Gutiérrez-Adán et al., 2004; Mourot et al., 
2006; Patel et al., 2007; Caixeta et al., 2009; Romar et 

al., 2011; Ripamonte  et al., 2012). 
 
Developmental competence and number of copies of 

mitochondrial DNA 
 
During the oogenesis and folliculogenesis the 

number of copies of mitochondrial DNA (mtDNA) 
increases significantly, ending up with mature oocytes 
with hundreds of thousands of copies (Cao et al., 2007; 
Shoubridge and Wai, 2007; Cree et al., 2008; Wai et al., 
2008). The oocyte content of mtDNA is greater than 
what is found in any other cellular type (May-Panloup 
et al., 2007), driving the attention to a potential 
importance of mitochondria for fertilization and early 
embryo development (Smith et al., 2005; May-Panloup 
et al., 2007; Shoubridge and Wai, 2007). Thus, oocytes 
with reduced number of copies of mtDNA may have 
poorer development or incapacity to develop after 
fertilization compared to oocytes with normal content of 
mtDNA. Despite their huge content, the number of 
copies of mtDNA considerably varies between different 
oocytes (Tamassia et al., 2004; Smith et al., 2005; May-
Panloup et al., 2007; Chiaratti et al., 2010a). Although it 
remains unclear what determines such variation or its 
effects upon development (May-Panloup et al., 2007), 
several studies have related the amount of mtDNA and 
fertility in many species (Reynier et al., 2001; May-
Panloup et al., 2005a, 2007; El Shourbagy et al., 2006; 
Santos et al., 2006; Wai et al., 2010). In humans, 
reduced amount of mtDNA was found in unfertilized 
oocytes with intrinsic abnormalities compared to 
oocytes that failed to fertilize because of impairments 
related to other factors (Reynier et al., 2001). Although 
it seems evident that the depletion of the content of 
mtDNA is associated with oocyte disruption of 
competence (May-Panloup et al., 2007), this relation is 
still controversial (Chiaratti and Meirelles, 2010; 
Chiaratti et al., 2010a). 

The same retrospective model described below 
was used to investigate the occurrence of a correlation 
between the number of copies of mtDNA and oocyte 
competence (Chiaratti et al., 2010a). However, no 
differences were observed regarding the number of 
copies of mtDNA of oocytes that normally developed 
into blastocysts and the ones that blocked or lacked 
cleavage. Even the oocytes with 90% less mtDNA than 
average were capable of reaching the blastocyst phase 
(Chiaratti et al., 2010a). These findings are 
contradicting with the general consensus that the 
amount of mtDNA affects oocyte competence to 
develop into blastocyst (Reynier et al., 2001; May-
Panloup et al., 2005a, 2007; El Shourbagy et al., 2006; 
Santos et al., 2006; Wai et al., 2010). A subsequent 
study was then designed to evaluate the developmental 
capacity of oocytes subjected to mitochondrial depletion 
(Chiaratti et al., 2010a). Oocytes were centrifuged to 
concentrate the mitochondria in one extremity and allow 
the removal of the mitochondria-enriched cytoplasmic
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fraction by aspiration. When the depleted oocytes were 
cultured they developed into blastocysts in similar rates 
of intact-control oocytes (Chiaratti et al., 2010a), 
supporting our previous finding. Molecular analysis 
performed in the resulting embryos evidenced that the 
content of mtDNA is restored during its development to 
blastocyst when the oocyte is mitochondrial depleted 
(Chiaratti et al., 2010a). The mtDNA reestablishment is 
accompanied by the overexpression of genes enrolled in 
the control of mtDNA replication (Chiaratti et al., 
2010a). This result suggests that when the oocytes have 
reduced number of copies of mtDNA (i.e. oocytes with 
90% less mtDNA and capable to develop into 
blastocyst), the embryo is able to regulate the 
replication of the mitochondrial genome to attempt the 
energetic demands of the pre-implantation period 
(Thompson, 2000; Houghton and Leese, 2004; 
Dumollard et al., 2007; May-Panloup et al., 2007). This 
finding is opposed to previous studies that point out a 
relationship between mtDNA content and oocyte 
competence (Reynier et al., 2001; May-Panloup et al., 
2005a, 2007; El Shourbagy et al., 2006; Santos et al., 
2006; Wai et al., 2010). The contradiction of results 
may lay in different causes. First, the level of mtDNA in 
mice is kept constant during the pre-implantation period 
(Smith et al., 2005; Thundathil et al., 2005; Cao et al., 
2007; Cree et al., 2008; Wai et al., 2008), differently 
from what is found to occur in cattle (May-Panloup et 
al., 2005b; Smith et al., 2005). This can explain the 
connection found between the oocyte competence and 
the content of mtDNA in mice (Wai et al., 2010). In 
humans, it is possible that the reduced number of copies 
of mtDNA observed in unfertilized ova is consequence 
of a disruption in the machinery of mtDNA replication 
(Reynier et al., 2001; May-Panloup et al., 2005a; Santos 
et al., 2006). On the other hand, in cattle, the oocytes 
subjected to the depletion of a cytoplasmic fraction 
concentrated with mitochondria were probably free of 
abnormalities and consequently able to restore their 
original stocks of mtDNA by activating the machinery 
of replication. Thus, the embryonic development was 
unaffected by initial depletion (Chiaratti et al., 2010a). 
Abnormalities in the machinery of mtDNA replication 
were already reported in humans (Luoma et al., 2004; 
Pagnamenta et al., 2006). One example is the alteration 
in the expression of TFAM, a key gene that regulates 
mtDNA replication (Smith et al., 2005; May-Panloup et 
al., 2007). 

 
Cytoplasmic transfer as a tool to restore oocyte 

competence 
 

The cytoplasmic transfer was used in the late 
nineties to improve the results of assisted reproduction 
in women with recurrent fails in embryonic 
implantation after ICSI (intracytoplasmic sperm 
injection) or IVF (Cohen et al., 1997, 1998; Huang et 
al., 1999; Lanzendorf et al., 1999). By this procedure, 5 

to 15% of the cytoplasm from a presumed competent 
oocyte was transferred during the ICSI to the oocyte of 
a patient with fertility problems. This technique allowed 
the reestablishment of oocyte capacity to develop into a 
viable embryo and culminated in the delivery of healthy 
babies (Cohen et al., 1997, 1998; Huang et al., 1999; 
Lanzendorf et al., 1999). Thus, it has been suggested 
that one or more cytoplasmic factors transferred during 
this procedure were responsible for rescuing 
development by sustaining the necessities of the 
incompetent oocyte (Barritt et al., 2001; Chiaratti et al., 
2011b; Levy et al., 2004; Poulton et al., 2010). In 
domestic animals, the cytoplasm transfer has been more 
frequently used as a model to study mitochondrial 
inheritance (Steinborn et al., 1998; Levy et al., 2004; 
Chiaratti et al., 2010b; Ferreira et al., 2010; Sansinena 
et al., 2011). However, considering the importance of 
cytoplasmic inheritance to the early embryonic 
development (Picton et al., 1998; Meirelles et al., 2004; 
May-Panloup et al., 2007; Shoubridge and Wai, 2007), 
it can be potentially used to improve the fertility of 
animals with oocytes of reduced fertility. This may be 
applied, for example, to restore oocyte competence of 
repeat breeders Holstein cows. Recently, the low 
fertility of repeat breeder cows exposed to heat stress 
was attributed to oocyte disruption, with indicatives of 
cytoplasmic alterations (Ferreira et al., 2011). If results 
are confirmed, the competence of development of 
oocytes recovered from repeat breeder cows can be 
potentially restored by the supplementation with a 
fraction of cytoplasm from oocytes of categories known 
as more fertile (i.e. Holstein heifers). 

Based on the fore discussed data, several 
cytoplasmic factors can be responsible for 
developmental failures of incompetent oocytes (Picton 
et al., 1998; Robert et al., 2000; Meirelles et al., 2004; 
May-Panloup et al., 2007; Biase et al., 2008, 2009, 
2012; Chiaratti and Meirelles, 2010). Among these, the 
importance of the number of mtDNA copies per oocyte 
has been most discussed once it probably represented a 
limiting factor for its competence when cytoplasmic 
transfer was successfully used in humans (Barritt et al., 
2001; Levy et al., 2004; Chiaratti et al., 2011b). It is 
reasonable to consider that cytoplasm transfer 
introduces mitochondria in the recipient oocyte, what 
may restore its developmental competence by enhancing 
the content of mtDNA when this is limiting (Barritt et 
al., 2001; Levy et al., 2004; Chiaratti et al., 2011b). 
However, due to previous discussed data rejecting the 
relation between mtDNA content and oocyte 
competence (Chiaratti and Meirelles, 2010; Chiaratti et 
al., 2010a), we believe that this hypothesis is strongly 
questionable for cattle. Aiming to investigate this 
hypothesis, bovine oocytes were incubated with etidium 
bromate (EtBr) during the IVM (Chiaratti et al., 2011a). 
The EtBr is known for its capacity of interfering on 
mtDNA replication, resulting in depleted copies in 
somatic cells (Chiaratti and Meirelles, 2006). When
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oocytes treated with EtBr were fertilized, a decrease on 
blastocyst development was observed. This decrease 
was completely reversed by cytoplasmic transfer from 
oocytes that were not exposed to EtBr (Chiaratti et al., 
2011a). Hence, when the embryos that had their 
development capacity restored by cytoplasmic transfer 
were transferred to synchronized recipient cows, healthy 
calves were born (Chiaratti et al., 2011a). 
Unexpectedly, neither the number of copies of mtDNA 
nor the mitochondrial function estimated by the analysis 
of the mitochondrial membrane potential nor the total 
amount of ATP were altered in EtBr-treated oocytes 
(Chiaratti et al., 2011a). Because the treatment with 
EtBr can have affected another cytoplasmic components 
(i.e. RNAs, proteins, energetic substrates), the effect of 
EtBr on development may not be resulted by mtDNA 
replication disruption (Malter, 2011). Anyway, these 
results clearly demonstrated that cytoplasmic transfer 
can successfully restore the competence of 
compromised oocytes (Malter, 2011). Thus, the 
potential use of cytoplasmic transfer to improve the 
competence of oocytes to develop in viable blastocysts 
was reaffirmed. This technique can be an interesting 
strategy to restore fertility of females with low embryos 
yield. 
 

Perspectives on in vitro embryo production 
 
Increasing nuclear transfer embryo production and 
generation of gametes in vitro  
 

Reproductive biotechnologies have for long 
shown its use for the production, selection, and 
multiplication of valuable animals.  

Cloning through nuclear transfer, indeed, is one 
of the biotechnologies discussed since the birth of the 
ewe Dolly, the first mammal derived from a somatic cell 
nuclear transfer (SCNT; Wilmut et al., 1997). After 
Dolly, several other animal species were already 
produced in laboratories throughout the world.  

SCNT provides the possibility of the oocyte 
cytoplasm to reprogram an already differentiated cell 
into a pluripotent status similar to the embryonic one, 
and then to generate a new organism. The factors 
present in the ooplasm, as well as their exact mechanism 
of action during the reprogramming of the differentiated 
nucleus are not yet fully known. 

Particularly on farm animal production, the 
possibility of generating identical individuals is highly 
desirable when two main concerns are considered: the 
first, which has been employed since SCNT generation 
until now, is the production of high quality herds and 
animals carrying special characteristics. Such selected 
animals would be multiplied by large-scale cloning, 
evaluated, distributed to breeders or owners, and used in 
specific reproductive systems.  

However, the second concern, which is 
probably the most striking opportunity enabled by 

cloning regarding animal production, has not yet been 
accomplished. The large-scale production of identical 
commercial herds in a defined breeding system, similar 
to other livestock presenting homogeneous genetic 
lineages, and its derived products commercialized to 
specialized food or pharmaceutical companies, is still 
not viable nowadays due to the low efficiency of SCNT. 

Although SCNT reprograms a differentiated 
nucleus, it remains an inefficient technique. Less than 
5% of produced embryos generate healthy adult animals 
(Wilmut, 2002; Cibelli, 2007). Several studies have 
demonstrated nuclear reprogramming deficiencies in 
cloned embryos (Bourc’his et al., 2001; Dean et al., 
2001; Rideout et al., 2001; Santos et al., 2003) leading 
to problems such as placental dysfunctions, large 
offspring syndrome, and hepatic and respiratory 
complications (Hill et al., 1999; Heyman et al., 2002; 
Meirelles et al., 2010). 

As mentioned before, the factors that determine 
the ability of the oocyte cytoplasm to reprogram the 
somatic cell nucleus have been under investigation. It is 
reported that cloning efficiency is inversely correlated 
to the differentiated status of the donor cell, suggesting 
that an undifferentiated nucleus is more likely to be 
remodeled and reprogrammed (Green et al., 2007). 
Hence, cloning using embryonic stem cells (ESC; 
Rideout et al., 2000; Humpherys et al., 2001) have 
resulted in higher efficiency (Hiiragi and Solter, 2005) 
when compared to the use of more differentiated cells 
such as lymphocytes (Inoue et al., 2005) and fibroblasts 
(Wakayama et al., 1999; Humpherys et al., 2001; 
Wakayama and Yanagimachi, 2001; Hochedlinger and 
Jaenisch, 2002; Gong et al., 2004; Blelloch et al., 2006). 
Therefore, the selection of cell populations that are 
amenable to reprogramming, for example, the use of 
ESC as donor nuclei, may be important to increase the 
cloning efficiency (Solter, 2000). 

Interestingly, embryonic stem cells derived 
from other species other than mouse and humans, for 
example farm animals, fail to maintain the pluripotent 
characteristics in vitro. Despite innumerous studies, they 
still lack consistency of pluripotency markers and have 
not produced chimeras. These cells, are, therefore 
named stem cells-like, are not able to maintain its 
characteristics during in vitro culture, hampering its use 
for cloning. 

The use of truly pluripotent cells which can be 
maintained in vitro for long periods without losing 
pluripotency properties as nuclei donors on animal 
cloning, however, was enabled by the advent of genetic 
induction of differentiated cells into pluripotency after 
forced expression of pluripotency-related transcription 
factors (OCT3/4, SOX2, KLF4, and C-MYC, represented 
by OSKM; Takahashi and Yamanaka, 2006, Takahashi 
et al., 2007). These cells, called induced pluripotent 
stem cells (iPS cells or iPSC) are actually a 
groundbreaking advent for stem cell research in farm 
animals, once controversially to ESC, iPSC can be



 Meirelles et al. Improvements in in vitro embryo production. 
 

306 Anim. Reprod., v.10, n.3, p.302-310, Jul./Sept. 2013 

generated and in vitro cultured in these species, and 
moreover, they apparently show pluripotency patterns 
similar to those from human and murine ES cells. 

Recent data from our lab indicate that bovine 
fetal fibroblasts can be in vitro reprogrammed into 
pluripotent after lentiviral transduction of murine 
OKSM (unpublished data). These cells were positive for 
several markers of pluripotency, therefore being 
characterized in a pluripotent status not yet reported in 
bovine ESC-like (Fig. 1).  

 

 
Figure 1. Bovine iPSC. 200X. 
 

Recently the production of cloned swine and 
mice embryos after nuclear transfer of iPSC as nuclei 
donors was reported (Cheng et al., 2012; Liu et al., 
2012). In our conditions, when bovine IPS (biPS) cells 
were used as nuclei donors, they were able to derive 
pre-implantation embryos. When these embryos were 
transferred to recipient cows, at least initial pregnancies 
could be established. However, cell cycle 
synchronization between biPS and oocyte needs to be 
optimized in order to allow a real comparison between 
developmental rates of embryos produced in vitro. 
 
The ability of in vitro gamete generation 
 

Another remarkable evidence that in vitro 
embryo production may benefit from nuclear 
reprogramming processes is the possibility of in vitro 
generation of functional gametes. Epigenetic studies 
conducted mainly based on cloned and induced 
reprogramming models have helped the ability of iPSCs 
in producing functional gametes, which may be helpful 
not only for the purpose of autologous treatment of 
several animal or human infertilities, but also, may 
avoid developmental problems found in SCNT-derived 
embryos. 

When properly cultivated and maintained ES or 
iPS cells have been shown to be able to generate 
structures similar to primordial germ cells (PGCs; 
Hubner et al., 2003; West et al., 2006). The induced 

PGCs were able to develop into structures similar to 
oogonia, which are able to undergo meiosis, to recruit 
adjacent cells to form follicles and mediate the 
development to blastocyst after spontaneous 
parthenogenesis (Hubner et al., 2003; Dyce and Li, 
2006). 

Female or male gamete-like structures have 
been derived in vitro in humans, mice and swine 
(Nagano, 2007). Recently, the generation of viable 
animals after induction of ES or iPS cells into PGCs-
like cells in vitro was reported. These cells were able to 
develop into gametes in vivo, which were recovered, 
submitted to IVM and IVF in mice (Hayashi et al., 
2012). 

Cellular reprogramming in germinal cells is 
still a rare event, and similarities between such process 
and natural reprogramming need further studies. In vitro 
generation of functional gametes derived from other cell 
types from selected animals, without presenting the 
complications due to SCNT, may lead to a huge 
improvement on reproductive biotechnologies related to 
in vitro embryo production in a near future. 
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