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Abstract 
 

The major challenge for a greater 
dissemination of in vitro produced (IVP) bovine 
embryos is to improve embryonic survival after 
cryopreservation. The involvement of embryonic lipids 
on this issue is well documented. However, it has been 
recognized that not only the amount of lipids that 
affects embryo cryotolerance, but the embryo survival 
capacity after cryopreservation is a rather multifactorial 
event. In this review, some strategies to improve 
embryonic lipid composition and postcryopreservation 
survival by modifying the embryos themselves to make 
them more cryopreservable are overviewed. The use of 
semi-defined and defined serum-free culture media, the 
addition of some chemicals in the culture media to 
modify embryo lipid composition, and the modulation 
of embryo cell membrane fluidity by cholesterol or 
unsaturated fatty acids added to the culture media and 
oocyte/embryo donor nutritional management with a 
diet enriched in polyunsaturated fatty acids, were 
described as alternatives for the improvement of IVP 
embryo survival after cryopreservation. 
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Introduction 
 

The global in vitro production of bovine 
embryos has increased for the 6th consecutive year in 
2011. The total number of in vitro produced (IVP) 
embryos transferred worldwide was 373,836. Brazil alone 
was responsible for 85% of the global market of IVP 
embryos (Stroud, 2012). This achievement can be 
attributed to the high number of oocytes recovered by 
ovum pick-up (OPU) of zebuine breed donors, mainly 
represented by Nellore (Bos taurus indicus) animals, 
allowing the commercial application of in vitro 
production on large-scale programs (Pontes et al., 2011). 

Embryo cryopreservation is an assisted 
reproductive technology that allows the storage of 
excess embryos derived from in vitro production and 
embryo transfer programs so they can be 
commercialized or transferred at the most convenient 
time. It is considered a strategy to overcome some 
logistic problems associated with the transfer of large 
numbers of fresh embryos and mainly for expanding the 
commercialization of embryos between countries 
(Sudano et al., 2012c). 

Despite the very good results associated with 
the fresh IVP embryo transfer, the use of cryopreserved 
embryos is extremely limited. The modest results of 
cryopreserved IVP embryos limit their application at the 
field conditions as it is successfully done with the 
semen in the artificial insemination. Even after many 
advances in embryo research over the past decades, 
embryo cryopreservation remains one of the most 
challenging biotechnologies of bovine reproduction, 
since the cryopreservation results are still inconsistent. 
This fact reflects directly in the lower number of 
cryopreserved embryos (Fig. 1) in Brazil (3 to 7%) and 
worldwide (7 to 8%) over the last years (Stroud, 2010, 
2012; Viana et al., 2010; Viana, 2012). 

The most common approach to deal with the 
disappointing results of cryopreservation is to vary the 
cryopreservation procedures by altering, for example, 
the concentration and type of cryoprotectants, the time 
and temperature of the protocol, and the addition of 
additives (sugars or surfactants). Despite the fact that 
this approach usually results in improvements, they are 
often limited, what has led to increasing the efforts on 
an embryo-focused approach by modifying the 
embryos themselves to make them more 
cryopreservable (Seidel, 2006). Therefore, the 
objective of this review is to present some strategies 
for improving postcryopreservation survival capacity 
through an embryo-focused approach in order to 
produce an embryo more resistant to the 
cryopreservation. 
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Figure 1. Total number and percentage of cryopreserved in vivo (ET) and in vitro (IVP) produced bovine embryos in 
the world (A) and Brazil (B). Data were obtained from IETS annual statistics and data retrieval committee report 
(http://www.iets.org/comm_data.asp), and Brazilian record data (Viana and Camargo, 2007; Viana, 2009; Viana et 
al., 2010; Viana, 2012). 
 

Differences between in vitro- and in vivo-produced 
embryos and quality control of in vitro production 

systems 
 

Since the first success of the cryopreservation of 
a mouse embryo (Whittingham et al., 1972), several 
procedures were developed to cryopreserve embryos. 
These methods can be basically classified in two major 
strategies: slow freezing and vitrification. Despite that 
both of them are considered cryopreservation techniques, 
they have important conceptual differences. In the slow 
freezing system, extracellular water crystallizes resulting 
in increased osmotic gradient that draws water from the 
intracellular compartment until intracellular vitrification 
occurs. In the vitrification system, both intra and 
extracellular compartment vitrify after cellular dehydration 
has already occurred (Saragusty and Arav, 2011). 

When comparing the results of these 

cryopreservation methods based on the embryo origin, 
i.e. IVP versus in vivo produced (ET) embryos, ET 
embryos showed similar pregnancy rates (varying from 
39 to 59%) for both slow freezing and vitrification 
procedures (Massip, 1987; van Wagtendonk-de Leeuw 
et al., 1997; Inaba et al., 2011), while the best results for 
IVP embryos (varying from 52 to 100% of re-expansion 
and from 36 to 93% of hatching/hatched rate) were 
achieved using vitrification (Nedambale et al., 2004; 
Mucci et al., 2006; Yu et al., 2010; Inaba et al., 2011). 
It is largely known that IVP embryos have a greater 
sensitivity to the cryopreservation techniques than ET 
ones (Leibo and Loskutoff, 1993) based on the fact that 
comparison of embryos from these two origins has 
demonstrated that the embryos do not survive equally in 
the different cryopreservation methods.  

There are many morphological and metabolic 
differences between IVP and ET embryos, such as: very
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electron-dense cytoplasm, loose blastomeres, buoyant 
density, metabolic abnormalities (“crabtree effect” and 
“unquite metabolism”), gene overexpression, apoptosis 
rate, lipid content, and postcryopreservation survival 
(Fair et al., 2001; Abe et al., 2002; Rizos et al., 2002; 
Corcoran et al., 2006; De La Torre-Sanchez et al., 2006b; 
Mucci et al., 2006; Leese et al., 2008a; Côté et al., 2011; 
Sudano et al., 2011). All these alterations observed in 
IVP embryos can be attributed to the different in vitro 
culture conditions during oocyte maturation and embryo 
development that modulate the occurrence of these 
distinctive phenotypes (Lonergan et al., 2003).  

In the literature, the large amount of 
cytoplasmic lipid droplets observed in IVP embryos has 
been suggested to be the major cause of reduced 
postcryopreservation survival (Abe et al., 2002; De La 
Torre-Sanchez et al., 2006b; Mucci et al., 2006; 
Barceló-Fimbres and Seidel, 2007a, b). Indeed, an 
increased amount of lipid droplets had a moderate 
correlaction with the postcryopreservation survival. 
However, the embryo quality evaluated by the apoptosis 
rate had a strong correlaction with the embryo survival 
after cryopreservation (Sudano et al., 2012b), 
highlighting the importance of embryo quality after 
cryopreservation and suggesting that embryo 
cryosurvival capacity is a multifactorial event. Several 
factors are invoved in the embryo cryotolerance, such as: 
lipid content, lipid composition, embryo metabolism, 
apoptosis, and global gene expression pattern (Sudano et 
al., 2011, 2012a, b, c).  

The goal during in vitro embryo production is 
try to mimick as much as possible the in vivo 
enviromental condition to achieve a good quality 
embryo, which, in turn, could be cryopreserved more 
efficiently. Several researchers suggest a rigorous 
quality control during all steps of in vitro embryo 
production to obtain good results (Lane et al., 2008; 
Hasler, 2010; Saragusty and Arav, 2011). 

In this context, we explore in this review the 
important aspects that could affect IVP embryo quality 
and cryotolerance, namely: culture media composition 
(additives, salts, aminoacids, hormones, sugars, 
antioxidants, pH, and osmolarity), atmosphere (lower or 
higher oxigen tension), temperature, oocyte donor, 
semen, sire, and technician (Gardner, 2008; Leese et al., 
2008b; Feugang et al., 2009; Hasler, 2010; Hugentobler 
et al., 2010).  
 

Embryo lipids 
 

There are evidences that at least four classes of 
lipids affect embryo survival after cryopreservation: 
triacylglycerides (TAG; mainly stored at the cytoplasmic 
lipid droplets), free fatty acids (FFA), cholesterol (Chol) 
and phospholipids (PL; cell membrane lipids). 

The reason for the increased number of 
cytoplasmic lipid droplets in IVP embryos is unknown. 
However, it is speculated that it is related to fetal calf 

serum (FCS) supplementation in the culture media. It 
seems that FCS increases embryo lipid content through: 
a) the lipoproteins from the serum are absorbed by the 
embryonic cells (Sata et al., 1999); b) the embryo is 
induced to perform neosynthesis of triacylglycerides 
due to the presence of FCS (Razek et al., 2000); and c) 
the FCS changes the function of β-oxidation in the 
mitochondria (Abe et al., 2002). Another potential 
reason is that lipid accumulation occurs as an effect of 
abnormal energetic metabolism. An imbalance in the 
cellular oxidation-reduction process also occurs, 
affecting mitochondrial function and impairing 
metabolism of lipid complexes through β-oxidation 
(Abe et al., 2002). 

The lipid droplets present in the IVP embryos 
cytoplasm are mainly composed by TAG, the 
predominant lipid in the cytoplasm of mammalian cells 
(McKeegan and Sturmey, 2011). These stored lipids 
constitute an important source of energy for oocytes and 
embryos (Sturmey et al., 2009). The estimated TAG 
content remained constant in a serum-free medium 
during embryo development (33 ng/embryo); however, 
in a serum-supplemented medium the TAG amount 
increased from 33 ng in 5-8 cell stage to 62 ng in 
hatched blastocysts (Ferguson and Leese, 1999). In 
addition, FCS also increased the total fatty acid amount 
compared with a serum-free media (74.2 vs. 57.2 ng, 
respectively), mostly represented by an increase in the 
palmitic (28.9 vs. 20.1 ng), stearic (18.0 vs. 13.1 ng), 
oleic (12.1 vs. 4%), and  palmitoleic (16.3 vs. 3.7%), 
which are saturated (Reis et al., 2003) and 
monounsaturated (Sata et al., 1999) fatty acids. 

On the other hand, PL are the most abundant lipid 
in eukaryotic cell membranes and their role in successful 
embryo cryopreservation remains poorly understood (van 
Meer et al., 2008). Phospholipids, particularly 
phosphatidylcholines (PC) and sphingomyelins (SM), are 
structural units of functional membranes, and their 
composition determines the physicochemical properties 
of cell membranes, including fluidity, permeability, and 
thermal phase behavior (Edidin, 2003). We have recently 
reported that the PL profiles of bovine embryos vary 
between subspecies (B. taurus indicus vs. B. taurus 
taurus) and origin (IVP vs. ET) and that specific lipid 
species can potentially be used as biomarkers of 
embryonic postcryopreservation survival. These results 
indicate that not only the lipid amount but also the lipid 
composition accounts for embryo survival after 
cryopreservation (Sudano et al., 2012c).  

 
Strategies to improve embryo lipid composition and 

postcryopreservation survival capacity 
 
Fetal calf serum-free media 
 

It is well known that FCS provides energy 
substrates, amino acids, vitamins, growth factors, and 
heavy-metal chelators. Although FCS has useful 
properties, its use has been associated with several
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abnormalities, such as cell organelles modification, 
mitochondrial degeneration, gene expression 
modification, large offspring syndrome, increased lipid 
droplets number and reduced postcryopreservation 
survival (Abe et al., 2002; Lazzari et al., 2002; Rizos et 
al., 2002, 2003; Sudano et al., 2011). As a result, 
chemically-defined media (without FCS) have been 
developed (Keskintepe and Brackett, 1996). 

It has already been described that it is possible 
to produce in vitro bovine embryos in defined (Block et 
al. 2010; Momozawa and Fukuda, 2011) or semidefined 
(Mucci et al., 2006) serum-free media without affecting 
blastocyst yield and increasing embryo cryosurvival. In 
addition, a reduction of FCS concentration in the culture 
media alone was enough to decrease the lipid content and 
increase the postcryopreservation survival (Sudano et al., 
2011). The use of serum-free media has been considered 
as one of the first actions for the establishment of a 
successful in vitro embryo production system, allowing 
higher embryo survival after cryopreservation (Rizos et 
al., 2003; Mucci et al., 2006). 

 
Use of chemical additives 
 

Energetic substrate is promptly metabolized 

through the glycolytic pathway (Fig. 2). However, the 
energetic metabolism during early embryo development 
(pre and post-compaction stage) is abnormal in IVP 
embryos (De La Torre-Sanchez et al., 2006b). Under in 
vitro conditions, embryos show an increased activity of 
the glycolytic pathway and a consequently inhibition of 
oxidative phosphorylation pathway, characterized as 
“Crabtree effect” (Crabtree, 1929; Seshagiri and Bavister, 
1991). A higher metabolic activity through the glycolysis 
impairs embryo development, because too little energetic 
substrate is partitioned to the pentose phosphate pathway 
(PPP) which is part of an important biosynthetic pathway 
(Wales and Hunter, 1990), by favoring lipid 
accumulation and rising cellular concentrations of lipid 
synthesis precursors (Rieger, 1992). 

An interesting approach would be the use of 
phenazine ethosulfate (PES) in order to balance the 
energetic metabolism and reduce the lipid accumulation, 
by favoring the enzymatic reactions of PPP (Fig. 2), 
since this chemical oxidizes NADPH to NADP (De La 
Torre-Sanchez et al., 2006a; Sudano et al., 2011). The 
use of PES in the post-compaction period resulted in a 
reduction of the embryo lipid accumulation and an 
increase in the postcryopreservation survival (Barceló-
Fimbres and Seidel, 2007b; Sudano et al., 2011). 

 

 
Figure 2. Energetic metabolism and phenazine ethosulfate (PES) mechanism of action in the preimplantation 
embryo. Energetic substrate is promptly metabolized in the glycolytic pathway (represented in black) through 
glycolysis within cytoplasm, followed by the krebs cycle and oxidative phosphorylation within mitochondria to 
produce energy in the form of ATP. PES reduces NADPH to NADP (dashed red arrows) favoring the pentose 
phosphate pathway (represented in green) with inhibition of the fatty acids pathway (represented in blue). Adapted 
from Barceló-Fimbres and Seidel (2007a). 
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Another chemical used to reduce lipid content 
of IVP embryos is the forskolin (Fig. 3A), a potent 
adenylate cyclase activator that stimulates the lipase 
activity through the cAMP/protein kinase pathway 
(Men et al., 2006). Forskolin supplementation in the 
culture media reduced lipid content and increased the 
embryo survival after cryopreservation of bovine and 
porcine IVP embryos (Men et al., 2006; Paschoal et al., 
2012). 

More recently, L-carnitine, a small water-
soluble molecule and cofactor of β-oxidation, was found 
to play an important role in the lipid metabolism 
(Sutton-McDowall et al., 2012; Moawad et al., 2013). 
This chemical is crucial for fatty acids (in form of acyl-
CoA) translocation into the mitochondria (Fig. 3B), 
where they will be metabolized to acetyl-CoA through 

β-oxidation, and can be further metabolized in Krebs 
cycle and oxidative phosphorylation for ATP production 
(Sutton-McDowall et al., 2012). L-carnitine also has an 
antioxidant activity protecting the cells from DNA 
damage (Abdelrazik et al., 2009). Several beneficial 
effects of L-carnitine supplementation to the culture 
media have already been reported, including the 
improvement in the embryo development (Sutton-
McDowall et al., 2012), lipid metabolism and 
cryotolerance of bovine embryos (Takahashi et al., 
2012). The unique dual effects of L-carnitine enriching 
cellular lipid metabolism and providing antioxidative 
protection make it a chemical candidate for a non-
invasive improvement of cryotolerance and 
developmental competence in IVP embryos (Takahashi 
et al., 2012). 

 

 
Figure 3. Mechanism of action of forskolin (A), a potent adenylate cyclase activator that stimulates the lipase 
activity through the cAMP / protein kinase (PKA) pathway, and L-carnitine (B), that favors fatty acid translocation 
into the mitochondria (in form of acyl-CoA) where they will be metabolized to acetyl-CoA through β-oxidation. 
 
Cell membrane 
 

In 1972, the structure of cell membrane was 
presented as the fluid mosaic model, which describes a 
cell membrane composed by a fluid bilayer of 
phospholipids oriented with the hydrophilic and 
hydrophobic portion to outside (extracellular and 
cytosolic compartments) and interior of the membrane, 
respectively (Singer and Nicolson, 1972).  

The PL are composed by a three carbon 
backbone to which a phospho-head group is attached to 

an end carbon of the backbone and two fatty acyl chains 
(fatty acids) are attached to the other carbons. Both the 
phospho-head groups and the fatty acids can vary in 
their composition and this will determine the properties 
of the cell membrane (Edidin, 2003). Indeed, it was 
reported that embryos with an increased abundance of 
unsaturated lipid species had greater cryosurvival 
(Sudano et al., 2012c). 

Cholesterol is another molecule present in cell 
membrane, and its level and the ratio between cholesterol 
and PL also affects the membrane fluidity (Horvath and
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Seidel, 2006). Enriching the embryo cell membrane with 
unsaturated fatty acids and cholesterol to improve embryo 
cryotolerance has already been performed by two 
procedures, as follows: 1) membrane incorporation 
through its supplementation in the culture media; 2) 
nutritional management of oocyte/embryo donors and 
by offering a diet-rich with polyunsaturated fatty acids.  

While the addition of cholesterol-loaded 
methyl-β-cyclodextrin to the cryopreservation media 
had no effect on cryopreserved IVP bovine blastocysts 
(Pugh et al., 1998), it seems to have a positive effect on 
vitrified oocytes as measured by an increase in the 
cleavage rate and number of eight-cell embryos 
(Horvath and Seidel, 2006), as well as an improvement 
in the nuclear maturation (Sprícigo et al., 2012) after 
warming in comparison with the untreated group. 

In addition, the unsaturated fatty acid 
supplementation (especially linoleic acid) in the culture 
media improved embryo cryotolerance (Hochi et al., 
1999; Pereira et al., 2007) and reduced lipid content 
(Pereira et al., 2007) of IVP embryos. Likewise, the 
oocyte/embryo donor nutritional management with a 
diet enriched in polyunsaturated fatty acids increased 
the cryosurvival of ewe oocytes (Zeron et al., 2002) and 
porcine embryos (Kojima et al., 1996). 

 
Conclusion 

 
The major obstacle for a greater dissemination 

of the use of in vitro produced bovine embryos is their 
high sensitivity to the cryopreservation process. The 
involvement of the embryo lipids on this aspect is well 
documented. However, it has been recognized that not 
only the amount of cytoplasmic lipids affects embryo 
cryotolerance. The embryo survival capacity after 
cryopreservation is a multifactorial event. A rigorous 
quality control during all steps of in vitro embryo 
production is required to obtain a good quality and 
cryopreservable embryo. The use of a serum-free media, 
the addition of chemicals to change lipid metabolism, and 
the modulation of membrane lipid composition have been 
described as some alternatives for the improvement of the 
IVP embryo survival after cryopreservation 
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