Nutritional status of donor cows: insulin related strategies to enhance embryo development

C. Ponsart1,2,6, G. Gamarra1,2, S. Lacaze3, A.A. Ponter4,5

1ANSES, Animal Health Laboratory, Maisons-Alfort, France.
2UNCEIA, R&D, Paris, France.
3MIDATEST, Domaine de Sensaç, Denguin, France.
4Université Paris Est, Ecole Nationale Vétérinaire d’Alfort, UMR Maisons-Alfort, France
5INRA, UMR 1198 Biologie du Développement et Reproduction, Domaine de Vilvert, Jouy-en-Josas, France.

Abstract

Nutritional and metabolic status of domestic ruminant females is linked with reproductive success. Diet can influence ovarian activity via effects at various levels of the hypothalamus-pituitary-ovarian axis. Changes in the plane of nutrition can affect follicular growth by inducing changes in plasma metabolites and metabolic hormones, such as insulin and IGF1. This paper will review different results from in vivo and in vitro feeding approaches describing a programmed sequence in circulating insulin concentrations. The stimulatory effect of insulin and IGF1 on follicle growth has been previously demonstrated, especially on small follicle growth prior to superovulation. Thus, in vivo feeding strategies have been recently tested to enhance embryo development. It has been shown that the interaction between the gonadotropin content of the superstimulatory preparation with the nutritional program of the donor cow needs to be considered when aiming to optimize the success of ovarian superstimulatory protocols. Moreover, some practical feeding strategies such as short term dietary propylene glycol could improve in vitro embryo production in superovulated growth-restricted heifers. To conclude, different diets or dietary supplements may improve fertility and embryo quality by inducing a programmed sequence in circulating insulin concentrations.

Keywords: bovine, feeding, in vitro, in vivo, metabolic status.

Introduction

It has long been recognized that the nutritional and metabolic status of domestic ruminant females is associated with reproductive success, but the underlying mechanisms remain poorly understood (Gutierrez et al., 1997; Gong et al., 2002b; Adamiak et al., 2005). Several authors have proposed that metabolic signals, such as circulating concentrations of insulin, growth hormone (GH), leptin and the insulin-like growth factor system (IGF) interact at the central level to modulate the release of gonadotrophins (Garnsworthy et al., 2008). The quality or competence of harvested oocytes appears to be the most important determinant of embryo yields (Seneda et al., 2001) and this depends on the physiological and reproductive status of the donor animal, which are influenced by age, health and nutrition (Majerus et al., 1999; Armstrong, 2001; Boland et al., 2001). When working with young healthy cattle, the variability in embryo development rates in vitro may be influenced by the diet of the donor prior to oocyte recovery (Boland et al., 2001).

Lessons from in vitro approaches

A large number of in vitro studies have demonstrated the direct action of metabolic factors on granulosa and theca cells (Webb et al., 1999a, b; Lucy, 2000) and numerous experiments have also studied the direct effects of the diet on follicular variables following spontaneous or superovulation. In vitro studies have highlighted the fact that insulin and IGF1 are important mediators of follicular development, steroidogenesis, oocyte maturation and embryonic development (Gong et al., 1993).

In vivo feeding strategies to enhance embryo development

Diet can influence ovarian activity via effects at various levels of the hypothalamus-pituitary-ovarian axis. Changes in the plane of nutrition can affect follicular growth (Gutierrez et al., 1997; Gong et al., 2002a) by inducing changes in plasma metabolites and metabolic hormones, such as insulin and IGF1 (Armstrong et al., 2001) and/or in hormones and growth factors in follicular fluid (Landau et al., 2000; Matoba et al., 2014). Diet can also affect oocyte morphology (O’Callaghan et al., 2000), oocyte developmental capacity and embryo production.

It has been shown that over-feeding can be harmful for the developmental quality of oocytes and embryos produced in vivo and in vitro (Mantovani et al., 1993; Papadopoulos et al., 2001; Freret et al., 2006; Santos et al., 2008).

In addition, restricted feeding can have a positive effect on oocyte quality (Lozano et al., 2003) and the production of blastocysts in vitro (Armstrong et al., 2001; Freret et al., 2006). These results have been linked to the level of metabolites and hormones.
involved in the regulation of energy metabolism: in particular, an increase in the concentration of insulin and IGF1 is associated with high energy intake in dairy heifers (Freret et al., 2006). Webb et al. (2004) reviewed the stimulatory effect of insulin and IGF1 on follicle growth and Freret et al. (2006) showed that an increase in insulin concentrations during a short time period has a positive effect on small follicle growth prior to superovulation.

However, in the heifer, it has been shown that feeding regimens which increase insulin (hyperinsulinaemia) negatively influence the quality of oocytes (Adamiak et al., 2005; Freret et al., 2006). These findings support the idea that it may be possible to modulate insulin concentrations transiently to improve reproductive success, i.e. increase insulin during the phase of follicle growth (Scaramuzzi et al., 2006) and then return to pre-stimulated levels just before ovulation so as not to have a negative effect on oocyte quality. To further support this hypothesis, Garnsworthy et al. (2009) modified circulating insulin levels (high and low) in dairy cows post-partum via the diet. They showed that a diet causing high insulin concentrations during the phase of follicle growth and Freret et al. (2006) showed that an increase in insulin concentrations during a short time period has a positive effect on small follicle growth prior to superovulation.

Thus, cows with either too low (FR-L) or too high (AL-H) insulin and LH rates were higher for the AL-L (89.4%) and FR-H (86.7%) treatments. As expected, FR decreased circulating insulin concentrations (26.7 versus 46.0 μIU/mL). Fertilization rates were higher for the AL-L (89.4%) and FR-H (80.1%) treatments compared with the AL-H (47.9%) and FR-L (59.9%) treatments. In addition, the number of degenerate embryos was decreased for AL-L (1.3) and FR-H (0.4) treatments compared with the AL-H (2.6) and FR-L (2.3) treatments. Thus, cows with either too low (FR-L) or too high (AL-H) insulin and LH stimulation had lower embryo production after superstimulation because of reduced fertilization rate and increased percentage of degenerate embryos. Therefore, the interaction between the gonadotropin content of the superstimulatory preparation with the nutritional program of the donor cow needs to be considered when aiming to optimize the success of ovarian superstimulatory protocols.

Insulin related feeding strategies

Exogenous insulin administration increased the recruitment of follicles in response to gonadotropin in gilts (Cox et al., 1987) and also rescues follicles from atresia and therefore increases the number of ovulatory follicles (Matamoros et al., 1991). The roles of the IGF system and insulin appear particularly critical. Increased energy decreases IGFBP2 and IGFBP4 expression in small follicles. IGFBP2 has been shown to inhibit the actions of IGF in different cell lines and is present at high concentrations during the post-partum period (McGuire et al., 1995). Lowered IGFBP2 may in turn increase the bioavailability of systematically derived IGF1 and locally produced IGF2 in these follicles. On the contrary, in case of strong NEB, Wathes et al. (2008) have reported an increased expression of IGFBP2 in the liver whereas transcripts for IGFBP3 to 6 were down regulated. Together with the reduced IGF1 production, these changes are likely to lower IGF1 availability and receptivity for follicular cells leading to impaired follicular growth.

Other methods exist to modulate insulin secretion, for example the administration of dietary supplements which affect metabolism such as, propylene glycol (PG). PG, also known as 1,2-propianediol, is a 3-carbon compound (C3H8O2) derived from propylene and has been used since the 1950’s in the treatment of ketosis in post-partum dairy cattle (Maplesden, 1954). PG increases plasma glucose and insulin and decreases non esterified fatty acids (NEFA) and β-hydroxybutyrate (BHB). The latter two effects are seen in underfed animals (Nielsen and Ingvarsten, 2004). In a recent study on heifers we showed that short term dietary propylene glycol was associated with raised levels of glucose, insulin and stimulated follicle growth, causing an increase in the number of small follicles (diameter 1-4 mm) during the first days of an estrous cycle (Gamarra et al., 2014a). A second experiment aimed to test whether the daily oral administration of propylene glycol could improve in vitro embryo production in superovulated growth-restricted heifers (600 g/day) differing in their Anti-Mullerian Hormone (AMH) profiles (Gamarra et al., 2014b). Sixteen Holstein heifers were grouped according to AMH concentrations: low (L = 1-80 pg/mL; n = 7) or high (H: >150 pg/mL; n = 9). Administration of PG significantly increased the number of: small follicles (2-3 mm) and total follicles (2-8 mm) on day 2 of the cycle in all heifers. PG improved in vitro embryonic development rate (total number of embryos/number of fertilized oocytes) in all heifers compared to the control.

Taken together, these findings open-up the possibility of improving fertility and embryo quality by using diets or dietary supplements which induce a programmed sequence in circulating insulin concentrations.

References

cumulative effects of body composition and diet leading to hyperinsulinemia in cattle. *Biol Reprod*, 73:918-926.

