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Abstract 
 

The aim of this review is to present the current 
probes available that assess different compartments and 
functions of stallion spermatozoa, including assays to 
investigate the functionality of the membranes, nucleus 
and mitochondria, and to study cell signaling in this 
particular cell. New multi-parametric protocols for the 
assessment of stallion sperm, recently developed in the 
laboratory of the authors, will also be presented. The 
potential clinical applicability of diagnostic tests based 
on flow cytometry will also be discussed.  
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Introduction 
 

Particularly the last decade of the current 
century, has been witness to intensive research in sperm 
biology. Consequently, a better understanding of sperm 
function in relation to clinical andrology and sperm 
biotechnologies (Peña et al., 2011, 2015) has arisen. 
Relevant advances in stallion sperm biology include, 
among others, the following: the understanding of 
osmotic shock (Ball and Vo, 2001; Pommer et al., 2002; 
Ball, 2008) and its implications on cryopreservation, 
which promoted the development of new protocols 
based on more permeant cryoprotectants (Oldenhof et 
al., 2010, 2012, 2013; Hoffmann et al., 2011; 
Pukazhenthi et al., 2014); advances in understanding the 
role of reactive oxygen species (ROS; Gibb et al., 2014, 
2015; Varner et al., 2015; Gibb and Aitken, 2016); and 
the development of practical methods for stallion sperm 
separation and selection through colloidal centrifugation 
(Waite et al., 2008; Johannisson et al., 2009; Morrell et 
al., 2009a, b; Edmond et al., 2012; Crespo et al., 2013; 
Ponthier et al., 2013). More recently, the understanding 
of sperm bioenergetics and mitochondrial functionality 
have become two hot topics in stallion andrology. 
Beside these advances, better tools for sperm 
assessment have been developed, in which flow 
cytometry has played a major role. The aim of this 
review is to present a rapid summary of the current 
probes available to assess stallion sperm and describe 
new protocols for the assessment of stallion sperm, 
including those recently developed in the laboratory of 
the authors. The potential clinical applicability of a 

diagnostic test based on flow cytometry will also be 
discussed. Interestingly, these assays have been recently 
supported with field fertility data (Barrier Battut et al., 
2016). 
 
Basic principles of flow cytometry applied to sperm 

analysis 
 

Flow cytometry measures multiple parameters 
of cells that rapidly flow in a stream through a system of 
photonic receptors. The properties measured include the 
size of the spermatozoa in the forward scatter detector 
(FSC), the complexity in the side scatter detector (SSC) 
and the relative fluorescence intensity in fluorescence 
detectors (FL). These characteristics are detected using 
a fluidic and optical to electronic coupling system that 
records how each individual spermatozoon or other 
particle presents in the sample, scatters incident laser 
light, and emits fluorescence. In the flow cytometer, 
spermatozoa are carried to the laser interrogation point 
in a fluid stream (sheath fluid). When they pass through 
the laser intercept, they scatter laser light, and any 
fluorescent molecules present are excited and emit light 
in different wavelengths. Appropriately positioned 
lenses collect the scatter and fluorescent light. A 
combination of beam splitters and filters steer 
fluorescence to detectors that produce electronic signals 
proportional to the optical signals striking them. List 
mode data are collected on every single spermatozoon 
and stored in the computer; these data are analyzed and 
provide information about subpopulations in the sample 
and are displayed graphically in histograms and dot 
plots. Fluorescent compounds are used to study stallion 
sperm functionality. A fluorescent compound absorbs 
light energy over a range of wavelengths characteristic 
for each. This absorption of light causes an electron in 
the fluorescent compound to be raised to a higher 
energy level; the electron quickly returns to the ground 
state, releasing the excess energy as a photon. This 
transition of the energy is termed fluorescence. The 
range of wavelengths in which a fluorescent compound 
can be excited is called absorption spectrum, while the 
range of wavelengths emitted is called emission 
spectrum. Ideally, the light produced by emission 
should be different from the light used for excitation, 
and this difference is known as the Stokes Shift. The 
wavelength of emission is longer than the wavelength of
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excitation because typically more energy is used to 
excite the electrons of the fluorochrome than the energy 
released (as light) when the electrons return to the 
resting state. For example, a commonly used 
fluorochrome, fluorescein isothiocianate (FICT), 
absorbs light in the range 400-550 nm, with a peak or 
maximum excitation at 490 nm (the laser is used to 
excite a particular dye, the blue laser (488 nm) in this 
case), and emits in the range 475-700 nm, with a peak at 
525 nm (green spectrum). This range of wavelengths 
determines the filters and the channels (fluorescence 
channels FL) of detection to be used. Combining 
different flourochromes with multiple wavelengths of 
excitation and emission allows multiple and 
simultaneous measurements, however compensation for 
spectral overlap has to be considered and carefully 
managed. When two or more dyes are used 
simultaneously, there is a chance that their emission 
profiles will coincide, making measurement of the true 
fluorescence for each one difficult. This outcome can be 
avoided by using dyes at distant positions in the 
spectrum; for example, a dye that is excited with the 
violet laser (405 nm) and a dye excited with the red 
laser (647 nm). However, using dyes at distant positions 
is not always possible, and a process called fluorescence 
compensation is applied. This process calculates how 
much interference, as a percentage, a fluorochrome will 
have in a channel that was not assigned specifically to 
measure it. The design of an experiment in the flow 
cytometer implies careful selection of probes suitable 
for each particular cytometer, identification of potential 
spectral overlap among probes, use of proper controls 
for positive and negative populations (unstained 
sample), and controls for compensation (single stained 
samples in which there is a stained and unstained 
population for each dye to be used in the experiment). 
Depending on each particular experiment, other controls 
can be necessary, including fluorescence minus one 
(FMO) controls, isotype controls or secondary antibody 
only controls.  
 

The sperm membrane: integrity, permeability, 
fluidity, and functionality 

 
Traditional assessment of the sperm membrane 

has focused on the physical integrity using dye 
exclusion tests. Classical combinations of fluorescent 
probes for this purpose include the combination of 
SYBR-14 and propidium iodide (PI). This combination 
of probes requires the blue laser for excitation (488 nm) 
and provides two wavelengths of emission; green for 
live sperm (521 nm SYBR-14) and red for dead sperm 
(635 nm PI). This combination of probes allows the 
rapid discrimination of debris (because both are DNA 
binding probes), and both probes are excited with the 
blue laser (488 nm). Spillover between emission 
wavelengths of both probes can occur (521 nm for 
SYBR-14 and 635 nm for PI), and proper fluorescence 

compensation has to be established in order to use this 
probe pair because SYBR-14 still has, on average, a 6% 
emission at 635 nm. Furthermore, staining with SYBR-
14/PI discriminates only between live and dead sperm 
and does not expose initial states of membrane damage. 
Additionally, doublets have to be identified to correctly 
interpret this assay. Alternatively, Hoechst 33342 and PI 
(Plaza Davila et al., 2015) also allow the rapid 
discrimination of debris and have the advantage that 
spillover is unlikely due to the distinct excitation and 
emission spectra of these probes. However, H33342 
needs a violet or ultraviolet laser for excitation. 
Detection of more subtle changes in the sperm 
membrane requires the use of other probes. Fluidity of 
sperm membranes can be assessed with merocyanine 
540 (da Silva et al., 2011), and subtle increases in the 
permeability of the plasma membrane can be detected 
with YoPro-1 (Gallardo Bolanos et al., 2012, 2014a). 
Yo Pro-1 is routinely used in the authors’ laboratory in 
combination with PI; H33342 is also incorporated to 
sort debris. These combinations allow the detection of 
changes in sperm membranes at much earlier stages 
than SYBR-14 and correlate better with motility and 
sperm velocities (Gallardo Bolanos et al., 2012).  

Recently, new fixable fluorescent dyes have 
become available in multiple colors, which facilitate 
experiments with multiple spectra in fixed sperm. These 
probes are based upon the reaction of fluorescent 
reactive dye with cellular amines. These are proprietary 
dyes that can permeate the compromised membranes of 
necrotic cells and react with free amines both in the 
cytoplasm and on the cell surface, resulting in intense 
fluorescent staining. In contrast, only the cell surface 
amines of intact cells are available to react with the dye, 
resulting in relatively dim staining. The discrimination 
is maintained following formalin-fixation of the sample 
under conditions that inactivate pathogens. Moreover, 
these assays use only one channel of the flow cytometer, 
leaving the other channels available for multicolor 
panels. The potential advantage of these dyes is the 
ability to process and stain the samples at locations 
remote to the flow cytometer.   

The evaluation of the sperm’s ability to 
undergo the acrosome reaction in response to an agonist 
challenge, is useful in cases of infertility in certain 
thoroughbred lines. This assay, the Acrosomal 
Responsiveness Assay (ARA; Johnson et al., 2008; 
Vaner, 2008), evaluates the ability of the acrosome to 
react when challenged with the Ca2+ ionophore, 
A23197. Common probes to assess acrosomal integrity, 
either in a basal status after a challenge, are those which 
recognize targets inside the acrosome, including specific 
lectins (Pisum sativum agglutinin PSA, and Arachis 
hypogea agglutinin PNA) that bind to glucosidic 
residues in different parts of the acrosomal membrane. 
The acrosome has also been monitored in human sperm 
with anti-CD46 antibodies (Carver-Ward et al., 1994; 
Grunewald et al., 2008). 
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Mitochondria and stallion sperm functionality 
 

The mitochondria of spermatozoa are 
increasingly studied in both basic and applied andrology 
(Gibb et al., 2014; Peña et al., 2015; Plaza Davila et al., 
2015). Stallion spermatozoa are highly dependent on 
mitochondrial production of ATP, and mitochondrial 
malfunction leads rapidly to sperm senescence and 
death. Stallion spermatozoa have particularly active 
mitochondria, and as a result, they generate large 
amounts of reactive oxygen species (ROS; Gibb et al., 
2014; Plaza Davila et al., 2015). Sperm mitochondria 
are sensitive indicators of sperm stress during processes 
such as cooling and cryopreservation (Ortega-Ferrusola 
et al., 2008, 2009a). Two common probes are used to 
assess stallion mitochondrial function by flow 
cytometry. The probe 5,5’, 6,6’–tetrachloro-1,1’, 3,3’ 
tetraethylbenzymidazolyl carbocianyne iodide (JC-1) 
forms multimeric aggregates in mitochondria with high 
membrane potential (active mitochondria). These 
aggregates emit the high orange wavelength of 590 nm 
when excited at 488 nm. In mitochondria with low 
membrane potential (inactive mitochondria), JC-1 forms 
monomers that emit in the green wavelength (525 to 
530 nm) when excited at 488 nm (Garner and Thomas, 
1999; Gravance et al., 2000). Recently, mitotracker 
dyes (Gallon et al., 2006; Sousa et al., 2011) have 
become available in multiple colors and provide 
colorful alternatives to be used in multicolor 
experiments. Both JC-1 and Mitotracker deep red have 
been recently used in our laboratory (Gallardo Bolanos 
et al., 2014a). These probes measure different aspects of 
mitochondrial function; JC-1 reflects mitochondrial 
membrane potential, while mitotracker deep red 
passively diffuses across membranes and binds to thiols 
in active mitochondria (Peña et al., 2016).  
 

The sperm DNA 
 

The sperm chromatin structure assay (SCSA) 
has been extensively used. In stallion andrology, this 
assay has successfully discriminated between stallions 
of low, high, and average fertility (Love and Kenney, 
1998; Love, 2005). In spite of the importance of DNA, 
the origin of damage to sperm DNA is still largely 
ignored. In human andrology, it is becoming clear that 
two major factors are associated with damage to sperm 
DNA: oxidative stress and protamination of the 
spermatozoa. These two features are strongly linked 
because defective protamination renders spermatozoa 
more susceptible to oxidative damage (Aitken and De 
Iuliis, 2010; Aitken et al., 2013, 2014; Gavriliouk and 
Aitken, 2015). Recent research from our laboratory 
shows evidence indicating that DNA damage in stallion 
spermatozoa is oxidative as well (Balao da Silva et al., 
2014). Oxidative stress can be assessed using specific 
antibodies against the oxidized form of guanine; 8-
oxoguanine in fixed, permeabilized samples (Balao da 

Silva et al., 2016). 
 

The stallion sperm: a redox regulated cell 
 
Reactive oxygen species (ROS) as by-products 

of various metabolic processes may have detrimental 
effects, but ROS may also be important regulators of 
cellular functions (Stowe and Camara, 2009). These are 
chemical species formed after incomplete reduction of 
oxygen and include the superoxide anion (O2•-), 
hydrogen peroxide (H2O2), and the hydroxyl radical 
(OH•). Superoxide anion (O2•-) can be generated at 
different points within the mitochondrial electron 
transport chain (ETC) by univalent reduction of oxygen. 
Most superoxide is converted to H2O2 by superoxide 
dismutase inside and outside of the mitochondrial 
matrix, and superoxide in low and controlled amounts 
exerts important regulatory cellular functions. Excessive 
H2O2 can combine with Fe2+ to form reactive hydroxyl 
radical (OH•; Shen et al., 1992). Superoxide is short 
lived (t 1/2 = 1 ms) and cell impermeable, while H2O2 is 
more stable and cell permeable. In the presence of nitric 
oxide (NO•), O2•- forms the reactant peroxynitrite 
(ONOO•), and ONOOH induced nitrosylation of 
proteins, DNA, and lipids can modify their structure and 
function (Stowe and Camara, 2009). NO• is synthesized 
through the conversion of l-arginine to l-citruline by 
nitric oxide synthase (NOS). These enzymes are present 
in stallion spermatozoa, possibly as sperm specific 
isoforms (Ortega-Ferrusola et al., 2009b). Numerous 
studies indicate that ROS are important regulators of 
sperm function (Zini et al., 1995; Aitken et al., 1997; de 
Lamirande and Gagnon, 2002, 2003; De Lamirande and 
Lamothe, 2009), and ROS become detrimental only if 
homeostasis is lost (Peña et al., 2015). Moreover, recent 
evidence suggests that stallion sperm mitochondria 
produce significant amounts of NO (Ortega-Ferrusola et 
al., 2009b). Nitric oxide has a relatively long half-life (1 
s) and is more reactive than O2•-. Controlled ROS 
production occurs during capacitation in spermatozoa 
(Agarwal et al., 2014). This controlled production 
triggers signaling pathways initiated by an increase in 
cyclic adenosine 3’-5’ monophosphate (cAMP). 
Increased cAMP activates protein kinase A (PKA), and 
the subsequent phosphorylation of extracellular 
regulated -kinase-like proteins and finally tyrosine 
phosphorylation of proteins in the fibrous sheath of the 
spermatozoa, leading to sperm hyperactivation. 
Numerous assays have been developed to assess 
oxidative stress and production of ROS in the stallion 
spermatozoa (Baumber et al., 2002; Sabeur and Ball, 
2006; Burnaugh et al., 2007; Gibb et al., 2014; Plaza 
Davila et al., 2015). Flow cytometry can be used to 
detect specific reactive oxygen species (ROS), reactive 
nitrogen species (RNS) and the consequences of 
perturbed ROS homeostasis, such as lipid peroxidation, 
DNA oxidation, increased membrane permeability and 
protein oxidation. Reactive oxygen species can be
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detected using different probes. The superoxide 
indicator dihydroethidium, also called hydroethidine, 
exhibits blue-fluorescence in the cytosol until oxidized, 
where it intercalates within the cell's DNA, staining its 
nucleus a bright fluorescent red. Mitosox Red is used 
to specifically detect mitochondrial O2•-. Hydrogen 
peroxide can be detected using 
dichlorodihydrofluoresceindiacetate, although this probe 
is not highly specific for H2O2. Recently, molecules 
such as aryl boronate have been described and appear 
highly specific for the detection of H2O2 in spermatozoa 
(Purdey et al., 2015). Other probes have been recently 
introduced. The cellrox sensors are available in 
different colors. These may be fixed after staining, 
facilitating their use in multicolor panels. In our 
laboratory, the CellROX deep red has been used in 
multicolor experiments, especially to detect 
mitochondrial O2•- and the hydroxyl radical (OH•; 
Gallardo Bolanos et al., 2014b; Plaza Davila et al., 
2015). It is extremely important to consider the 
conditions in which the assay is performed. High Cell 
ROX deep red fluorescence may indicate either 
mitochondrial activity or real oxidative stress. The 
particular dependence of stallion spermatozoa on 
oxidative phosphorylation to generate ATP (Plaza 
Davila et al., 2015) may reflect the apparent paradoxical 
relationship between ROS and sperm functionality due 
to increased electron leakage and thus increased O2•- 
production (Ortega-Ferrusola et al., 2010; Gibb et al., 
2014; Yeste et al., 2015). 

The oxidation of the plasma membrane leads to 
increased membrane permeability (Christova et al., 
2004) that can be monitored with YoPro-1 (Ortega-
Ferrusola et al., 2008; da Silva et al., 2011; Gallardo 
Bolanos et al., 2012; Garcia et al., 2012; Gibb et al., 
2014). Oxidation of DNA can be monitored using 
antibodies against the oxidized form of guanine. 
Peroxidation of sperm membranes can be detected with 
the probe BODIPY 581/591 C11. This probe emits 
orange-red fluorescence in the non-oxidized state, 
shifting to green florescence when peroxidized (Ball 
and Vo, 2002; Ortega-Ferrusola et al., 2009c). Lipid 
peroxidation is also monitored by detection of 4- 
hydroxynonenal (4-HNE) using specific antibodies, a 
product from the oxidation of sperm- membrane lipids 
(Aitken et al., 2012; Gibb et al., 2014). This assay is 
considered a reliable indicator of ROS imbalance, and 
specific protocols for stallion spermatozoa have been 
recently published (Martin Munoz et al., 2015). 

 
Sperm senescence 

 
Senescent spermatozoa express active caspase 

3 (Amann, 2010; Aitken and Baker, 2013; Aitken et al., 
2015). Depending of the presence of pro-survival 
factors, caspase 3 remains inactive due to the 
phosphorylation of protein kinase B (PKB or Akt; 

Gallardo Bolanos et al., 2014a). If pro-survival factors 
are lost or oxidative stress reaches a threshold, caspase 3 
is activated and sperm senescence and death are 
triggered (Gallardo Bolanos et al., 2014b). 
Cryopreservation triggers this phenomenon, and 
surviving spermatozoa experience accelerated 
senescence (Thomas et al., 2006; Ortega-Ferrusola et 
al., 2008, 2009a). Active caspase 3 can be detected 
using CellEvent™ Caspase-3 Green Detection Reagent, 
which consists of a four-amino-acid peptide (DEVD) 
conjugated to a nucleic acid-binding dye. This cell-
permeant substrate is intrinsically non-fluorescent 
because the DEVD peptide inhibits the ability of the dye 
to bind to DNA. After activation of caspase-3 in 
apoptotic cells, the DEVD peptide is cleaved, enabling 
the dye to bind to DNA and produce a bright, 
fluorogenic response with an absorption/emission 
maximum of ~502/530 nm. 

 
Concluding remarks 

 
Flow cytometry is a powerful tool in 

andrology, allowing the rapid and simultaneous 
assessment of multiple sperm compartments and 
functions in thousands of spermatozoa in a few seconds. 
Recent data also suggests that the data generated are 
powerful forecasts of field fertility and an extremely 
important tool for quality control in stallion stations.  
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